Slow Warming of the Northern South China Sea during the Last Deglaciation
نویسندگان
چکیده
We have generated a record of alkenone sea surface temperatures (SSTs) during the last 28000 years from Core MD97-2146 for the northern South China Sea (SCS). The SST record showed a typical pattern for change in the northern SCS SST. The SST during the LGM was ~25 C, this decreased to ~24 C to 17 ka, increased to ~25.5 C to 14.5 ka, decreased again to ~24.5 C to 11.8 ka, increased gradually to ~27 C to 6 ka, and then increased more gradually to reach ~27.5 C at present. The SST difference ( SSTNSCS = SSTMD97-2146 SSTMD97-2141) between Cores MD97-2146 (the northern SCS; this study) and MD97-2141 (the Sulu Sea; Rosenthal et al. 2003) was used to characterize the SST changes in the northern SCS relative to changes in the adjacent WTP region. The SSTNSCS decreased from 21 to 11.8 ka and increased after 11.8 ka, indicating slower warming of the northern SCS during the last deglaciation than that of the adjacent western tropical Pacific region. We infer that the slow warming of the northern SCS was principally a result of stronger winter monsoon during the last deglaciation and early Holocene. In addition, the cool water inflow through the Taiwan Strait after 13 ka and the warm water inflow through the Sunda Shelf after 11 ka could influence the SST in the northern SCS.
منابع مشابه
Northern timing of deglaciation in the eastern equatorial Pacific from alkenone paleothermometry
[1] The equatorial cold tongue (ECT) of the eastern Pacific is the most dynamic ocean region in the world’s tropics and sets the tempo for global climate anomalies arising from El Niño–Southern Oscillation (ENSO) events. This region’s deglaciation history and relationship with north and south polar climates remains poorly understood, impeding integration of tropical Pacific ocean-atmosphere dyn...
متن کاملRadiocarbon variability in the western North Atlantic during the last deglaciation.
We present a detailed history of glacial to Holocene radiocarbon in the deep western North Atlantic from deep-sea corals and paired benthic-planktonic foraminifera. The deglaciation is marked by switches between radiocarbon-enriched and -depleted waters, leading to large radiocarbon gradients in the water column. These changes played an important role in modulating atmospheric radiocarbon. The ...
متن کاملRelationship between white spot syndrome virus (WSSV) loads and characterizations of water quality in Litopenaeus vannamei culture ponds during the tropical storm
An in-situ experiment was conducted to investigate the effect of tropical storm on the white spot syndrome virus (WSSV) loads in Litopenaeus vannamei rearing ponds. White spot syndrome virus loads, heterotrophic bacteria, Vibrio and water quality (including temperature, dissolved oxygen (DO), salinity, pH, NH4-N, and NO2-N) were continually monitored through one tropical storm. The WSSV loads d...
متن کاملIntensification and variability of ocean thermohaline circulation through the last deglaciation
Neodymium isotope ratios in the authigenic ferromanganese oxide component in a southeastern Atlantic core reveal a history of the global overturning circulation intensity through the last deglaciation. From a minimum during the Last Glacial Maximum (LGM), North Atlantic Deep Water (NADW) began to strengthen between 18 and 17 kyr cal. BP, approximately 2000–3000 years before the Bølling warming....
متن کاملEarly warming of tropical South America at the last glacial-interglacial transition.
Glaciation in the humid tropical Andes is a sensitive indicator of mean annual temperature. Here, we present sedimentological data from lakes beyond the glacial limit in the tropical Andes indicating that deglaciation from the Last Glacial Maximum led substantial warming at high northern latitudes. Deglaciation from glacial maximum positions at Lake Titicaca, Peru/Bolivia (16 degrees S), and La...
متن کامل